listingtable

Synopsis

A listing table displays the raw data from one column of a source table, with optional summary sections interleaved between. The row and column structure of the listing table is defined by grouping columns from the source table. Each row of data has to have its own cell in the listing table, therefore the grouping applied along rows and columns must be exhaustive, i.e., no two rows may end up in the same group together.

Here is an example of a hypothetical clinical trial with drug concentration measurements of two participants with five time points each.

using DataFrames
using SummaryTables
using Statistics

data = DataFrame(
    concentration = [1.2, 4.5, 2.0, 1.5, 0.1, 1.8, 3.2, 1.8, 1.2, 0.2],
    id = repeat([1, 2], inner = 5),
    time = repeat([0, 0.5, 1, 2, 3], 2)
)

listingtable(
    data,
    :concentration => "Concentration (ng/mL)",
    rows = :id => "ID",
    cols = :time => "Time (hr)",
    summarize_rows = [
        length => "N",
        mean => "Mean",
        std => "SD",
    ]
)
Time (hr)
0 0.5 1 2 3
ID Concentration (ng/mL)
1 1.2 4.5 2 1.5 0.1
2 1.8 3.2 1.8 1.2 0.2
N 2 2 2 2 2
Mean 1.5 3.85 1.9 1.35 0.15
SD 0.424 0.919 0.141 0.212 0.0707

Argument 1: table

The first argument can be any object that is a table compatible with the Tables.jl API. Here are some common examples:

DataFrame

using DataFrames
using SummaryTables

data = DataFrame(value = 1:6, group1 = repeat(["A", "B", "C"], 2), group2 = repeat(["D", "E"], inner = 3))

listingtable(data, :value, rows = :group1, cols = :group2)
group2
D E
group1 value
A 1 4
B 2 5
C 3 6

NamedTuple of Vectors

using SummaryTables

data = (; value = 1:6, group1 = repeat(["A", "B", "C"], 2), group2 = repeat(["D", "E"], inner = 3))

listingtable(data, :value, rows = :group1, cols = :group2)
group2
D E
group1 value
A 1 4
B 2 5
C 3 6

Vector of NamedTuples

using SummaryTables

data = [
    (value = 1, group1 = "A", group2 = "D")
    (value = 2, group1 = "B", group2 = "D")
    (value = 3, group1 = "C", group2 = "D")
    (value = 4, group1 = "A", group2 = "E")
    (value = 5, group1 = "B", group2 = "E")
    (value = 6, group1 = "C", group2 = "E")
]

listingtable(data, :value, rows = :group1, cols = :group2)
group2
D E
group1 value
A 1 4
B 2 5
C 3 6

Argument 2: variable

The second argument primarily selects the table column whose data should populate the cells of the listing table. The column name is specified with a Symbol:

using DataFrames
using SummaryTables

data = DataFrame(
    value1 = 1:6,
    value2 = 7:12,
    group1 = repeat(["A", "B", "C"], 2),
    group2 = repeat(["D", "E"], inner = 3)
)

listingtable(data, :value1, rows = :group1, cols = :group2)
group2
D E
group1 value1
A 1 4
B 2 5
C 3 6

Here we choose to list column :value2 instead:

using DataFrames
using SummaryTables

data = DataFrame(
    value1 = 1:6,
    value2 = 7:12,
    group1 = repeat(["A", "B", "C"], 2),
    group2 = repeat(["D", "E"], inner = 3)
)

listingtable(data, :value2, rows = :group1, cols = :group2)
group2
D E
group1 value2
A 7 10
B 8 11
C 9 12

By default, the variable name is used as the label as well. You can pass a different label as the second element of a Pair using the => operators. The label can be of any type (refer to Types of cell values for a list).

using DataFrames
using SummaryTables

data = DataFrame(
    value1 = 1:6,
    value2 = 7:12,
    group1 = repeat(["A", "B", "C"], 2),
    group2 = repeat(["D", "E"], inner = 3)
)

listingtable(data, :value1 => "Value", rows = :group1, cols = :group2)
group2
D E
group1 Value
A 1 4
B 2 5
C 3 6

Optional argument 3: pagination

A listing table can grow large, in which case it may make sense to split it into multiple pages. You can pass a Pagination object with rows and / or cols keyword arguments. The Int you pass to rows and / or cols determines how many "sections" of the table along that dimension are included in a single page. If there are no summary statistics, a "section" is a single row or column. If there are summary statistics, a "section" includes all the rows or columns that are summarized together (as it would not make sense to split summarized groups across multiple pages).

If the pagination argument is provided, the return type of listingtable changes to PaginatedTable{ListingPageMetadata}. This object has an interactive HTML representation for convenience the exact form of which should not be considered stable across SummaryTables versions. The PaginatedTable should be deconstructed into separate Tables when you want to include these in a document.

Here is an example listing table without pagination:

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:30,
    group1 = repeat(["A", "B", "C", "D", "E"], 6),
    group2 = repeat(["F", "G", "H", "I", "J", "K"], inner = 5)
)

listingtable(data, :value, rows = :group1, cols = :group2)
group2
F G H I J K
group1 value
A 1 6 11 16 21 26
B 2 7 12 17 22 27
C 3 8 13 18 23 28
D 4 9 14 19 24 29
E 5 10 15 20 25 30

And here is the same table paginated into groups of 3 sections along the both the rows and columns. Note that there are only five rows in the original table, which is not divisible by 3, so two pages have only two rows.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:30,
    group1 = repeat(["A", "B", "C", "D", "E"], 6),
    group2 = repeat(["F", "G", "H", "I", "J", "K"], inner = 5)
)

listingtable(data, :value, Pagination(rows = 3, cols = 3), rows = :group1, cols = :group2)

Page 1

group2
F G H
group1 value
A 1 6 11
B 2 7 12
C 3 8 13

Page 2

group2
I J K
group1 value
A 16 21 26
B 17 22 27
C 18 23 28

Page 3

group2
F G H
group1 value
D 4 9 14
E 5 10 15

Page 4

group2
I J K
group1 value
D 19 24 29
E 20 25 30

We can also paginate only along the rows:

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:30,
    group1 = repeat(["A", "B", "C", "D", "E"], 6),
    group2 = repeat(["F", "G", "H", "I", "J", "K"], inner = 5)
)

listingtable(data, :value, Pagination(rows = 3), rows = :group1, cols = :group2)

Page 1

group2
F G H I J K
group1 value
A 1 6 11 16 21 26
B 2 7 12 17 22 27
C 3 8 13 18 23 28

Page 2

group2
F G H I J K
group1 value
D 4 9 14 19 24 29
E 5 10 15 20 25 30

Or only along the columns:

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:30,
    group1 = repeat(["A", "B", "C", "D", "E"], 6),
    group2 = repeat(["F", "G", "H", "I", "J", "K"], inner = 5)
)

listingtable(data, :value, Pagination(cols = 3), rows = :group1, cols = :group2)

Page 1

group2
F G H
group1 value
A 1 6 11
B 2 7 12
C 3 8 13
D 4 9 14
E 5 10 15

Page 2

group2
I J K
group1 value
A 16 21 26
B 17 22 27
C 18 23 28
D 19 24 29
E 20 25 30

Keyword: rows

The rows keyword determines the grouping structure along the rows. It can either be a Symbol specifying a grouping column, a Pair{Symbol,Any} where the second element overrides the group's label, or a Vector with multiple groups of the aforementioned format.

This example uses a single group with default label.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, rows = :group)
group value
A 1
B 2
C 3
D 4
E 5

The label can be overridden using the Pair operator.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, rows = :group => "Group")
Group value
A 1
B 2
C 3
D 4
E 5

Multiple groups are possible as well, in that case you get a nested display where the last group changes the fastest.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group1 = ["F", "F", "G", "G", "G"],
    group2 = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, rows = [:group1, :group2 => "Group 2"])
group1 Group 2 value
F A 1
B 2
G C 3
D 4
E 5

Keyword: cols

The cols keyword determines the grouping structure along the columns. It can either be a Symbol specifying a grouping column, a Pair{Symbol,Any} where the second element overrides the group's label, or a Vector with multiple groups of the aforementioned format.

This example uses a single group with default label.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, cols = :group)
group
A B C D E
value
1 2 3 4 5

The label can be overridden using the Pair operator.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, cols = :group => "Group")
Group
A B C D E
value
1 2 3 4 5

Multiple groups are possible as well, in that case you get a nested display where the last group changes the fastest.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:5,
    group1 = ["F", "F", "G", "G", "G"],
    group2 = ["A", "B", "C", "D", "E"],
)

listingtable(data, :value, cols = [:group1, :group2 => "Group 2"])
group1
F G
Group 2 Group 2
A B C D E
value
1 2 3 4 5

Keyword: summarize_rows

This keyword takes a list of aggregation functions which are used to summarize the listed variable along the rows. A summary function should take a vector of values (usually that will be numbers) and output one summary value. This value can be of any type that SummaryTables can show in a cell (refer to Types of cell values for a list).

using DataFrames
using SummaryTables
using Statistics: mean, std

data = DataFrame(
    value = 1:24,
    group1 = repeat(["A", "B", "C", "D", "E", "F"], 4),
    group2 = repeat(["G", "H", "I", "J"], inner = 6),
)

mean_sd(values) = Concat(mean(values), " (", std(values), ")")

listingtable(data,
    :value,
    rows = :group1,
    cols = :group2,
    summarize_rows = [
        mean,
        std => "SD",
        mean_sd => "Mean (SD)",
    ]
)
group2
G H I J
group1 value
A 1 7 13 19
B 2 8 14 20
C 3 9 15 21
D 4 10 16 22
E 5 11 17 23
F 6 12 18 24
mean 3.5 9.5 15.5 21.5
SD 1.87 1.87 1.87 1.87
Mean (SD) 3.5 (1.87) 9.5 (1.87) 15.5 (1.87) 21.5 (1.87)

By default, one summary will be calculated over all rows of a given column. You can also choose to compute one summary for each group of a row grouping column, which makes sense if there is more than one row grouping column.

In this example, one summary is computed for each level of the group1 column.

using DataFrames
using SummaryTables
using Statistics: mean, std

data = DataFrame(
    value = 1:24,
    group1 = repeat(["X", "Y"], 12),
    group2 = repeat(["A", "B", "C"], 8),
    group3 = repeat(["G", "H", "I", "J"], inner = 6),
)

mean_sd(values) = Concat(mean(values), " (", std(values), ")")

listingtable(data,
    :value,
    rows = [:group1, :group2],
    cols = :group3,
    summarize_rows = :group1 => [
        mean,
        std => "SD",
        mean_sd => "Mean (SD)",
    ]
)
group3
G H I J
group1 group2 value
X A 1 7 13 19
B 5 11 17 23
C 3 9 15 21
mean 3 9 15 21
SD 2 2 2 2
Mean (SD) 3 (2) 9 (2) 15 (2) 21 (2)
Y A 4 10 16 22
B 2 8 14 20
C 6 12 18 24
mean 4 10 16 22
SD 2 2 2 2
Mean (SD) 4 (2) 10 (2) 16 (2) 22 (2)

Keyword: summarize_cols

This keyword takes a list of aggregation functions which are used to summarize the listed variable along the columns. A summary function should take a vector of values (usually that will be numbers) and output one summary value. This value can be of any type that SummaryTables can show in a cell (refer to Types of cell values for a list).

using DataFrames
using SummaryTables
using Statistics: mean, std

data = DataFrame(
    value = 1:24,
    group1 = repeat(["A", "B", "C", "D", "E", "F"], 4),
    group2 = repeat(["G", "H", "I", "J"], inner = 6),
)

mean_sd(values) = Concat(mean(values), " (", std(values), ")")

listingtable(data,
    :value,
    rows = :group1,
    cols = :group2,
    summarize_cols = [
        mean,
        std => "SD",
        mean_sd => "Mean (SD)",
    ]
)
group2
G H I J
group1 value mean SD Mean (SD)
A 1 7 13 19 10 7.75 10 (7.75)
B 2 8 14 20 11 7.75 11 (7.75)
C 3 9 15 21 12 7.75 12 (7.75)
D 4 10 16 22 13 7.75 13 (7.75)
E 5 11 17 23 14 7.75 14 (7.75)
F 6 12 18 24 15 7.75 15 (7.75)

By default, one summary will be calculated over all columns of a given row. You can also choose to compute one summary for each group of a column grouping column, which makes sense if there is more than one column grouping column.

In this example, one summary is computed for each level of the group1 column.

using DataFrames
using SummaryTables
using Statistics: mean, std

data = DataFrame(
    value = 1:24,
    group1 = repeat(["X", "Y"], 12),
    group2 = repeat(["A", "B", "C"], 8),
    group3 = repeat(["G", "H", "I", "J"], inner = 6),
)

mean_sd(values) = Concat(mean(values), " (", std(values), ")")

listingtable(data,
    :value,
    cols = [:group1, :group2],
    rows = :group3,
    summarize_cols = :group1 => [
        mean,
        std => "SD",
        mean_sd => "Mean (SD)",
    ]
)
group1 group1
X Y
group2 group2
A B C A B C
group3 value mean SD Mean (SD) value mean SD Mean (SD)
G 1 5 3 3 2 3 (2) 4 2 6 4 2 4 (2)
H 7 11 9 9 2 9 (2) 10 8 12 10 2 10 (2)
I 13 17 15 15 2 15 (2) 16 14 18 16 2 16 (2)
J 19 23 21 21 2 21 (2) 22 20 24 22 2 22 (2)

Keyword: variable_header

If you set variable_header = false, you can hide the header cell with the variable label, which makes the table layout a little more compact.

Here is a table with the header cell:

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:6,
    group1 = repeat(["A", "B", "C"], 2),
    group2 = repeat(["D", "E"], inner = 3)
)

listingtable(data, :value, rows = :group1, cols = :group2, variable_header = true)
group2
D E
group1 value
A 1 4
B 2 5
C 3 6

And here is a table without it:

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:6,
    group1 = repeat(["A", "B", "C"], 2),
    group2 = repeat(["D", "E"], inner = 3)
)

listingtable(data, :value, rows = :group1, cols = :group2, variable_header = false)
group2
group1 D E
A 1 4
B 2 5
C 3 6

Keyword: sort

By default, group entries are sorted. If you need to maintain the order of entries from your dataset, set sort = false.

Notice how in the following two examples, the group indices are "dos", "tres", "uno" when sorted, but "uno", "dos", "tres" when not sorted. If we want to preserve the natural order of these groups ("uno", "dos", "tres" meaning "one", "two", "three" in Spanish but having a different alphabetical order) we need to set sort = false.

using DataFrames
using SummaryTables

data = DataFrame(
    value = 1:6,
    group1 = repeat(["uno", "dos", "tres"], inner = 2),
    group2 = repeat(["cuatro", "cinco"], 3),
)

listingtable(data, :value, rows = :group1, cols = :group2)
group2
cinco cuatro
group1 value
dos 4 3
tres 6 5
uno 2 1
listingtable(data, :value, rows = :group1, cols = :group2, sort = false)
group2
cuatro cinco
group1 value
uno 1 2
dos 3 4
tres 5 6
Warning

If you have multiple groups, sort = false can lead to splitting of higher-level groups if they are not correctly ordered in the source data.

Compare the following two tables. In the second one, the group "A" is split by "B" so the label appears twice.

using SummaryTables
using DataFrames

data = DataFrame(
    value = 1:4,
    group1 = ["A", "B", "B", "A"],
    group2 = ["C", "D", "C", "D"],
)

listingtable(data, :value, rows = [:group1, :group2])
group1 group2 value
A C 1
D 4
B C 3
D 2
data = DataFrame(
    value = 1:4,
    group1 = ["A", "B", "B", "A"],
    group2 = ["C", "D", "C", "D"],
)

listingtable(data, :value, rows = [:group1, :group2], sort = false)
group1 group2 value
A C 1
B D 2
C 3
A D 4